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These guidelines are applicable to neonates and children with 
cardiac failure as indication for extracorporeal life support. 
These guidelines address patient selection, management dur-
ing extracorporeal membrane oxygenation, and pathways 
for weaning support or bridging to other therapies. Equally 
important issues, such as personnel, training, credentialing, 
resources, follow-up, reporting, and quality assurance, are 
addressed in other Extracorporeal Life Support Organization 
documents or are center-specific.
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This guideline is informed by available evidence and based on 
expert opinion, with targeted clinical recommendations for emerg-
ing centers and small volume programs as institutional standards 
are developed. The guideline may also be of benefit to experienced 
providers and centers in the process of reviewing local protocols. 
Circuit configuration, equipment specifications, anticoagulation 
recommendations, extracorporeal cardiopulmonary resuscitation 
(ECPR), and some specific patient populations are presented in 
other Extracorporeal Life Support (ELSO) guidelines.

Extracorporeal membrane oxygenation (ECMO) is the 
most commonly utilized mechanical circulatory support 
in neonates and children with refractory cardiac failure 
(Figure  1).1,2 Veno-arterial ECMO (VA ECMO) augments 
systemic cardiac output and respiratory gas exchange to 
facilitate adequate tissue oxygen delivery (DO2). Survival 
for children with heart disease supported with VA ECMO 
has improved over the past decade, despite expanding 
indications and increasing patient complexity.2 Increased 
utilization and experience of pediatric cardiac ECMO is 
reflected in a number of publications, but large evidence 
gaps remain. High-quality VA ECMO support for pediatric 
cardiac indications necessitates systems, protocols, interdis-
ciplinary teams, and training.

Patient Selection, Modes of Support,  
and Technical Considerations

Patient Selection

The indication for the use of VA ECMO for cardiac indica-
tions in children is cardiogenic shock unresponsive to stan-
dard medical therapies. Persistent systemic systolic pressure 
less than 50 mm Hg, urine output <1 ml/kg/h, lactic acidosis, 
central venous oxygen saturation (SVO2) <60% or arteriove-
nous oxygen saturation difference (AVO2) >30% in cyanotic 
congenital heart disease, an altered mental status due to low 
cardiac output may all be indicators of cardiogenic shock in 
children. Examples of pathologies causing shock are listed in 
Table 1. Consideration for early initiation of ECMO is impor-
tant as delayed initiation (beyond 6 hours of cardiogenic shock 
state) is associated with worse outcomes.1,3–25 Local resources 
should be taken into account when determining ECMO can-
didacy (Figure 2).

Veno-arterial ECMO should be considered with four primary 
strategies for ECMO support:

 1. Bridge to recovery: In patients with reversible underlying dis-
ease processes where cardiac function recovery can occur 
with time, medical interventions, or surgical correction;

 2. Bridge to bridge: In patients with acute single organ dis-
ease who can be supported to a ventricular assist device 
(VAD);

 3. Bridge to organ transplantation: In patients who may require 
cardiopulmonary support until heart transplantation;

 4. Bridge to decision: In patients who may recover end-
organ function, facilitate diagnosis, or determine candi-
dacy for alternative support/transplantation.
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Patient Selection Practice Points

 1. Institute ECMO before evidence of severe oxygen defi-
ciency and end-organ damage. Early initiation is impor-
tant for developing and low-volume ECMO centers 
without capacity for rapid initiation of ECPR.

 2. Individual institutions should consider their center 
experiences and resources when evaluating indications 
and contraindications for ECMO.

 3. Extracorporeal membrane oxygenation following pedi-
atric cardiac surgery should prompt early investigation 
and management of possible residual lesions.

Mode of Support

In children with cardiac dysfunction not responding to maxi-
mal medical therapy, VA ECMO support facilitates respiratory 
gas exchange and augments cardiac output for DO2 while 
allowing time for myocardial recovery or diagnosis and repair 
of anatomical lesions. Effective VA ECMO support should 
be assessed by surrogates of tissue oxygen delivery includ-
ing blood lactate, SVO2 or AVO2, near-infrared spectroscopy 
(NIRS), measures of end-organ function, for example, urine 
output, creatinine, liver function tests, and adequacy of car-
diac decompression assessed by echocardiography, chest radi-
ography, and ultimately by cardiac catheterization.

Figure 1. Decision-making flowsheet for VA ECMO for pediatric cardiac indications. VA ECMO, veno-arterial extracorporeal membrane 
oxygenation.
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Cannulation

In children supported with ECMO for cardiac indications, 
cannulation site, and strategy are determined by the patient’s 

size, underlying cardiac anatomy, the anatomy and surgical 
palliation of congenital heart disease, and any recent surgical 
intervention (Table 2). Central cannulation is commonly used 

Table 1. Indications, Contraindications, and Special Considerations for Cardiac Indications for Extracorporeal Membrane 
Oxygenation

INDICATIONS

Periprocedural Cardiac Surgery and Catheterization
 Preprocedural stabilization for 

inadequate systemic cardiac 
output—in cases where 
physiologic stability is likely to 
be achieved over time or early 
operative repair is likely to have  
a successful outcome

Preoperative neonates with obstructed total anomalous pulmonary venous return or transposition of 
the great arteries with inadequate mixing or persistent pulmonary hypertension

Circular shunt with Ebstein’s anomaly or pulmonary regurgitation following balloon dilation
Anomalous left coronary artery from the pulmonary artery
Restrictive pulmonary blood flow in tetralogy of Fallot or obstructed Blalock-Taussig shunt
Tetralogy absent pulmonary valve with airway or lung parenchymal compromise and inadequate 

pulmonary blood flow
Undifferentiated congenital heart disease with cardiopulmonary compromise

 Failure to wean from cardiopulmonary 
bypass or low cardiac output in the 
postoperative period

Ischemic reperfusion injury following cardiopulmonary bypass or inadequate cardioplegia

Myocardial edema related to the inflammatory bypass process or ventriculotomy

 Postoperative arrhythmia Junctional ectopic tachycardia with Tetralogy of Fallot with hemodynamic compromise refractory to 
antiarrhythmic measures

Circulatory Failure Due To Other Etiologies

 Cardiogenic Myocarditis

Cardiomyopathy

Postcardiac arrest ventricular dysfunction

Intractable tachyarrhythmia or bradycardia

 Obstructive Pulmonary hypertension

Pulmonary embolus

 Distributive* Sepsis

Anaphylaxis

Cardiopulmonary Arrest—see Extracorporeal Cardiopulmonary Resuscitation (ECPR) Guideline.

CONTRAINDICATIONS

Patient-level factors—ECMO 
support would be unlikely 
to facilitate survival without 
likelihood of major morbidity

Prolonged state of cardiogenic shock (over 6 hours) unlikely to benefit from initiation of ECMO
Relative prematurity or low birth weight in neonates (<34 weeks of gestational age or <2.0 kg) with 

significant morbidity and mortality
Extremes of prematurity or low birth weight (<32 weeks of gestational age or <1.5 kg)
Severe chromosomal abnormalities (e.g., Trisomy 13 or 18)
Irreversible brain damage or Intracranial hemorrhage (grade III or IV IVH)
Uncontrollable hemorrhage should be considered a contraindication for ECMO unless cannulation to 

ECMO would assist in source control

Procedural factors Inability to achieve vascular or central access for cannulation

SPECIAL CONSIDERATIONS

Aortic regurgitation VA ECMO flow results in increased afterload on the left ventricle, and even mild aortic regurgitation 
progress to become clinically significant

Attention to left heart decompression or early transition to cardiopulmonary bypass may be required

Interrupted aortic arch Careful attention to the anatomy of head and neck vessels (i.e., location of interruption of arch) is 
required before ECMO cannulation to ensure brain perfusion with oxygenated ECMO flow

Stage 1 palliative surgery (S1P) ECMO support after S1P for hypoplastic left heart syndrome is the most frequent postoperative 
ECMO indication in neonates

In S1P with systemic to pulmonary shunt, higher ECMO flow may be required (150–200 ml/kg/min)

Temporary shunt restriction to limit pulmonary blood flow and promote systemic blood flow may be 
necessary

In patients with RV-PA conduit, maintaining cardiac ejection (and thus flow across the conduit) may 
prevent shunt thrombosis

Stage 2 and 3 palliative surgery Infants and children after surgical palliation with cavopulmonary anastomoses (Glenn and Fontan 
circulations) represent a complex physiologic group in whom stable support with ECMO can be 
difficult to establish given the separation of systemic venous return (Table 2)

*Note: May be challenging to achieve adequate ECMO flow for delivery of oxygen to tissues in the setting of vasoplegia.
ECMO, extracorporeal life support; RV-PA, right ventricle to pulmonary artery; VA ECMO, veno-arterial extracorporeal membrane oxygenation.
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in the postcardiopulmonary bypass period or in the presence of 
a recent sternotomy (i.e., less than 10–14 days), with right atrial 
access for venous drainage and cannulation of the aorta for arte-
rial return.19,20,26 Neck access via the internal jugular vein and 
common carotid artery is the favored peripheral cannulation 
sites in many smaller children (<5–6 years or <30 kg), balancing 
optimized ECMO flow through the larger upper body vessels 
against possible increased risk of neurologic adverse events.27,28 

For older children, the femoral vein and femoral artery approach 
may be utilized.26 Neck vessel cannulation in younger children 
typically necessitates open surgical access, while femoral ves-
sels may be cannulated using either open or Seldinger tech-
nique. When femoral vessels are used, limb ischemia is avoided 
by using the smallest arterial cannula for desired flow rate, distal 
reperfusion cannula insertion, and opposing femoral arterial and 
venous vessel site cannulation strategies.29,30

Figure 2. ICU ECMO cannulation preparation. ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit.

Table 2. Cannulation Strategy in Children With Cardiac Disease

Anatomy or Surgical 
Palliation

Central Cannulation Peripheral Cannulation

Additional Strategies
Venous  
Access

Arterial  
Access

Venous  
Access

Arterial  
Access

TWO VENTRICLES      

Biventricular circulation or 
structurally normal heart

Right atrium Aorta Internal jugular or 
femoral

Common 
carotid or 
femoral

Left atrial decompression may need to be 
considered

SINGLE VENTRICLE      

Shunted or RV-PA 
conduit physiology 
(stage 1)

Common 
atrium

Aorta Internal jugular Common 
carotid

*Peripheral = neck access due to 
patient size. Care re: cannula position 
with respect to shunt—may result 
in overcirculation to lungs or shunt 
occlusion

Superior  
cavopulmonary 
anastomosis

(stage 2)

SVC or 
common 
atrium

Aorta Internal jugular or 
femoral

Common 
carotid

*If femoral approach only used, passive 
venous return must flow through 
lungs—ventilation must be optimized. 
Additional venous cannula may be 
required

Total cavopulmonary 
anastamosis (Fontan, 
stage 3)

Fontan baffle 
or common 
atrium

Aorta Internal jugular or 
femoral

Common 
carotid or 
femoral

Additional venous cannula often required

RV-PA, right ventricle to pulmonary artery; SVC, superior vena cava; VA ECMO, veno-arterial extracorporeal membrane oxygenation.
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Children with congenital heart disease are at risk of periph-
eral vessel occlusion due to cardiac catheterization access, 
and knowledge of vessel patency is important before attempted 
cannulation.10 This is particularly relevant for children with 
single-ventricle physiology palliated to cavopulmonary circu-
lations who often require multisite cannulation to maximize 
venous drainage (Table 2).

If ventricular function is inadequate to open the aortic valve 
during systole, left ventricular diastolic pressure and left atrial 
pressure increase resulting in inadequate myocardial decom-
pression, subendocardial ischemia, and pulmonary venous 
congestion. Decompressing the hypertensive left atrium can be 
achieved by atrial septostomy, left atrial cannulation (directly 
or via catheter crossing the atrial septum), left ventricular vent-
ing via an open approach,31–34 or an axial transaortic valve 
pump (Impella Abiomed, Danvers, MA) device.35 Left atrial 
decompression performed early (<18 hours postcannulation) 
minimizes the duration of ECMO and mechanical ventilation.34

In children with congenital heart disease, predominant 
right ventricular failure can be observed in patients in the 
post- operative period (e.g., patients with Tetralogy of Fallot or 
Ebstein’s anomaly). Here, a special case can be made for VA 
ECMO for right-sided support. This can be achieved via stan-
dard cannulation or with targeted support by cannulation of 
the right atrium (venous cannula) and the pulmonary artery 
(arterial cannula), facilitating oxygenation and supplement-
ing subpulmonary ventricle function. Isolated right ventricular 
support, therefore, warrants central cannulation.36,37

Mode of Support Practice Points

 1. Central cannulation is used following recent sternotomy.
 2. Peripheral cannulation in infants is via the neck and, for 

older children, the femoral vessels.
 3. Consider preplanning a cannulation strategy in patients 

with congenital heart disease and difficult vascular 
access.

 4. Early evaluation for the need for cardiac decompression 
in the setting of severe myocardial dysfunction without 
native ejection.

Management During Extracorporeal Life Support

Tissue oxygen delivery is determined by the sum of patient 
and ECMO output which independently contribute to oxygen 
delivery (Figure 3).

Systemic Blood Flow

Normal homeostatic mechanisms maintain DO2 to oxygen 
consumption (VO2) at a ratio of 5:1 (20% extraction). During 
shock states, a DO2:VO2 ratio of less than 2:1 (50% extrac-
tion) leads to anaerobic metabolism and metabolic acidosis. 
The goal during VA ECMO support is to maintain DO2 as close 
to normal as possible—at least three times VO2 (ratio of >3:1). 
During VA ECMO, the systemic oxygen extraction is continu-
ously monitored via the drainage cannula (SVO2), and as the 
arterial oxygen concentration and hemoglobin are known, a 
DO2:VO2 ratio can be monitored. If the arterial saturation is 
100% and the SVO2 is 80% the ratio is 5:1. So adjusting flow 
and hemoglobin to maintain SVO2 >66% assures that the goal 
of DO2:VO2 >3 is met. Typically, this is achieved with a car-
diac index of 2.5–3 L/min/m2 or 100–150 ml/kg/min in infants, 
70–100 mL/kg/min in larger child. Further details available in 
the ELSO Red Book.38

To commence VA ECMO support after cannulation, pump 
flow is gradually increased until adequate flow (as above) is 
achieved. Blood flow is subsequently decreased to the low-
est level that will provide adequate support to meet cellular 
metabolic demands (typically a cardiac index of 2.5–3 L/min/
m2 or 100–150 ml/kg/min in infant, 70–100 mL/kg/min in larger 
child). Ideally, arterial pulse pressure will be at least 10 mm 
Hg, indicating systemic ventricular ejection, which reduces 
the risk of systemic ventricular thrombosis. This may not be 
achieved if ventricular function is poor, despite inotropic sup-
port, and should prompt consideration of left atrial decompres-
sion or alternate support strategies. Inability to achieve desired 
blood flow or ongoing evidence of inadequate cardiac output 
necessitates urgent consideration of adjustment or additional 
drainage cannulae. Because the pulse pressure is low, the 
mean systemic arterial pressure will be somewhat lower than 
normal. In addition, patients placed on ECMO for cardiac sup-
port are often managed with inotropes before ECMO initiation. 
As these drugs are titrated down, systemic vascular resistance 
(SVR) decreases, and systemic pressure falls proportionately. 
If the perfusion pressure is inadequate (low urine output and 
poor perfusion), systemic arterial pressure can be increased by 
increasing pump flow, transfusing blood products, or titrating 
vasopressor infusions.

Oxygenation

The rated flow is the blood flow rate at which venous 
blood with a saturation of 75% and hemoglobin of 12 g/dl 
exits the gas exchange device with a saturation of 95%. The 

Figure 3. Determinants of tissue oxygen delivery on veno-arterial ECMO. ECMO, extracorporeal membrane oxygenation.
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rated flow is a standard to compare the maximum oxygen-
ation capacity of gas exchange devices and is determined 
by surface area and blood path mixing. As long as the 
blood flow is below recommended rated flow for that gas 
exchange device (and the inlet saturation is 70% or higher), 
the oxyhemoglobin saturation at the outlet should be greater 
than 95%. Usually, the outlet saturation will be 100%, and 
the pO2 will be over 300 mm Hg. If the fraction of oxygen 
on the sweep gas (FdO2) is 100%, at or below the device 
rated flow, and the outlet saturation is less than 95%, the 
gas exchange device is not working at full efficiency (due 
to irregular flow, clotting). It may be necessary to replace it. 
Oxygen delivery from the circuit should be adequate for full 
support (systemic saturation greater than 95% at low ventila-
tor settings and FiO2). AVO2 difference should be less than 
20–30%. In states of high oxygen demand or poor oxygen 
delivery (low cardiac output, impaired lung gas exchange), 
maintaining the hematocrit over 40% (hemoglobin ~12 g/dl) 
can optimize oxygen delivery. Patients with already impaired 
oxygen delivery, such as those with palliated single-ventricle 
physiology, should be maintained with a hematocrit above 
40%, particularly during partial VA ECMO support and in 
preparation for weaning. Target paO2 should be maintained 
within normal limits, as hyperoxia during VA ECMO support 
has been associated with mortality.39

Carbon Dioxide Clearance

CO2 transfer across the membrane lung is more efficient 
than that of oxygen, and CO2 removal will exceed oxygen 
uptake. CO2 clearance is controlled by the sweep gas flow 
rate. Increasing sweep gas flow rate increases CO2 clear-
ance but does not affect oxygenation. Initial gas flow to 
blood flow ratio varies across institutions. As a guide, gas 
flow rate less than blood flow rate can be used to begin 
support, with early arterial blood gas monitoring to avoid 
hypocarbia, aiming for a gradual reduction (over 4–8 hours) 
in PaCO2 to minimize rapid shifts in cerebral perfusion in 
patients who are hypercapnic at the time of cannulation. If 
the initial PaCO2 is greater than 70 mm Hg, the PaCO2 should 
be normalized over several hours to avoid rapid changes of 
cerebral perfusion related to CO2 and pH, which are associ-
ated with neurologic injury and mortality.40,41 If CO2 clear-
ance is decreased, but oxygenation is adequate, the cause 
is usually water accumulation within the gas compartment 
of the membrane lung. This may be cleared by intermittently 
increasing sweep gas flow to a higher rate.

Goals Following Cannulation Practice Points

 1. Following ECMO initiation, inability to achieve desired 
blood flow or ongoing evidence of inadequate tissue 
oxygen delivery requires an urgent reassessment of 
ECMO strategy/cannulation.

 2. With myocardial recovery, the patient's contribution to 
systemic oxygen content and oxygen delivery increases 
and may require adjustments to ventilation/FiO2.

 3. Increasing the sweep flow will increase CO2 clearance 
but will not improve oxygenation.

Anticoagulation; See Extracorporeal Life 
Support Anticoagulation Guideline and 
Extracorporeal Life Support Red Book, Ch 7

Unfractionated heparin (UFH) remains the most commonly 
utilized anticoagulant for pediatric ECMO.38,42 A bolus dose 
of UFH (50–100 units/kg) is given at cannulation and subse-
quently administered as a continuous infusion (Figure 2). The 
goal is to maintain circuit flow without thrombosis despite 
artificial circuit exposure. Anticoagulation therapy and mon-
itoring strategies vary between institutions and according to 
patient diagnosis and thrombotic versus bleeding consider-
ations.43 Neonates and infants pose particular challenges due 
to physiologic differences in hemostasis.44,45 Extracorporeal 
membrane oxygenation programs must develop an institu-
tional approach to monitoring and managing anticoagula-
tion for patients.46

In recent years, some programs have evolved protocols 
incorporating direct thrombin inhibitors (DTIs) such as bivali-
rudin and argatroban, citing some practical and theoretical 
benefits.47,48 While initially limited to specific instances in 
which UFH was specifically contraindicated (e.g., heparin-
induced thrombocytopenia, heparin-induced thrombocytope-
nia [HIT], and heparin resistance) the relative predictability of 
response and stability in patients on long-term support have 
led to increased adoption and preferential use in some pro-
grams. Advantages of the use of DTIs include the ability to treat 
or prevent HIT, the lack of dependence on antithrombin, and 
reduced time to achieving steady-state concentrations due to 
their short half-life (25 minutes for bivalirudin and 45 minutes 
for argatroban).47,49 Relative disadvantages of DTIs include 
higher cost (10–70× that of UFH in some institutional com-
parisons) and the lack of reversal agents (mitigated by short 
half-life). Due to the lack of reversal agents, DTIs are less com-
monly utilized for cardiopulmonary bypass, and transition 
from heparin as used in the operating room must be managed 
carefully, especially for patients with recent cardiotomy and 
central cannulation.

Viscoelastic tests, including thromboelastography or rota-
tional thromboelastometry are whole-blood assays measuring 
the rapidity and strength of thrombus formation. These tests 
provide additional data to standard coagulation panels on clot-
ting time, clot formation time, the firmness of clot formation, 
and clot lysis. They are particularly beneficial in diagnosing 
specific aspects of coagulopathy in bleeding patients, such 
as those supported for failure to wean from cardiopulmonary 
bypass after complex reconstruction. These tests can identify 
states of fibrinolysis and help guide targeted treatment of spe-
cific factor or component deficiencies.

Indications for blood product administration relate to patient 
and circuit factors, specifically bleeding, evidence of thrombus 
formation, and flow rates. Centers should refer to the ELSO 
anticoagulation guideline for detail.

Blood Product Administration

Patients often receive blood products to maintain hemoglo-
bin and product targets on ECMO.50–52 In the recent Pediatric 
Critical Care Transfusion and Anemia Expertise Initiative 
consensus statements regarding red blood cell transfusion in 
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critical illness, there was insufficient evidence for a specific 
red blood cell transfusion threshold for children on ECMO,53 
instead recommending transfusion decision-making to take 
into account evidence of inadequate systemic or regional 
oxygen delivery, adoption of blood conservation procedures 
and minimization of donor exposure.54 Many center protocols 
maintain hemoglobin between 10–12 g/dl. There is some evi-
dence that children on ECMO are more likely to have bleeding 
complications with a platelet count below 80,000; however, 
this may depend on the age of the patient and other factors 
such as recent cardiac surgery and cannulation strategy.50,55 
Centers should refer to the ELSO anticoagulation guideline for 
suggested transfusion targets and thresholds.

Patient Management During Extracorporeal Life Support

Cardiovascular

Heart rate and rhythm. Veno-arterial ECMO is capa-
ble of providing full cardiac output during cardiac arryth-
mias. However, arrhythmia can increase myocardial oxygen 
demands, delay ventricular recovery, and if associated with a 
lack of cardiac ejection, can lead to ventricular distension and 
inadequate myocardial decompression. Restoration of sinus 
rhythm and atrioventricular synchrony with antiarrhythmic 
therapy, overdrive pacing, direct current cardioversion, and 
electrophysiological ablation should be considered.

Blood pressure and vasoactive medications. Patient 
blood pressure is determined by two modifiable factors: 
blood flow (pump flow plus native cardiac output, Figure 3), 
and SVR. The pulse pressure is narrow when the native car-
diac output is minimal on full VA ECMO support. Ideally, 
the arterial pulse pressure is at least 10 mm Hg, with left 
ventricle ejection reducing intracardiac thrombosis risk. 
Severely reduced left ventricular systolic function may pre-
vent ejection against the VA ECMO flow, even with inotropic 
support. This should prompt early consideration of left atrial 
decompression or alternate support strategies. Adequacy of 
systemic cardiac output is determined by an assessment of 
clinical parameters of tissue oxygen delivery: warmth and 
color of extremities, urine output, lactate, premembrane 
oxygen saturation or AVO2 difference, and NIRS.56 In the 
setting of inadequate cardiac output with hypotension, after 
addressing hypovolaemia, VA ECMO flow can be increased 

or inotropes or vasopressors commenced (Table 3). Signs of 
low cardiac output with hypertension on ECMO may neces-
sitate optimization of sedation and use of vasodilator infu-
sions. To maintain some intracardiac and pulmonary blood 
flow, target VA ECMO flow can be around 80% of venous 
return, reflected by pulse pressure of approximately 10 mm 
Hg monitored with an invasive arterial line. Changes in 
arterial waveform may reflect myocardial recovery or an 
acute complication (circuit dysfunction, reduced preload, 
increased afterload).

Ventilator Management

Ventilation management on ECMO should minimize lung 
injury and optimize lung function to facilitate ECMO separa-
tion with cardiac recovery. Of note, for patients cannulated 
via femoral vessels with poor lung function, as cardiac func-
tion recovers, it is native lung function that determines oxygen 
content of antegrade flow from the heart into coronary arteries 
and head and neck vessels. These patients may consequently 
require higher FiO2 ± positive end-expiratory pressure (PEEP) 
than the “lung rest” settings used when patients are supported 
on ECMO for pulmonary indications.

Suggested protective lung strategy: Pressure-limited ventila-
tion, PEEP (8–10 cm H2O), tidal volume <6–8 ml/kg ideal body 
weight, peak inspiratory pressures <18–20 cm H2O, with a low 
rate (10 bpm).57–60

No single ventilation strategy is universally practiced, and 
the suggested strategy may need modification in patients with 
an open sternum or pulmonary/intrathoracic pathology.61,62 
Adjuncts to mechanical ventilation may include suctioning, 
use of ventilator, bronchoscopy, and prone positioning.63,64 
It may be appropriate in carefully selected patients to allow 
spontaneous breathing or extubate in the absence of lung 
pathology.

Fluid Management, Blood Volume, and Fluid Balance

After stability has been achieved following cannulation, 
resuscitation, and blood product replacement, diuresis should 
be instituted to target euvolemia. If pharmacologic diuresis is 
ineffective, continuous ultrafiltration or renal replacement ther-
apies can be used, often incorporated into the ECMO circuit.

Table 3. Indications for vasoactive infusion during VA ECMO support for cardiac indications

Vasoactive 
support Indication and Benefits and Specific Risks Medication Starting Dose Range

Inotrope Enhancement of contractility in a patient with severe cardiac dysfunction 
to facilitate aortic valve opening and prevent stasis of blood in the 
systemic ventricle and aortic root

Epinephrine
Dobutamine

0.02–0.05 µg/kg/min
5 µg/kg/min

To optimize blood pressure and end-organ perfusion
Does not facilitate myocardial rest

  

Vasopressor Peripheral vasoconstriction is indicated in a patient on VA ECMO for 
distributive shock, on maximal circuit blood flow with inadequate 
cardiac output to optimize blood pressure and end-organ perfusion.

Norepinephrine
Vasopressin

0.02–0.05 µg/kg/min
0.01–0.06 IU/kg/hr

Vasodilator Peripheral vasodilation will reduce systemic afterload improving circuit 
blood flow and systemic perfusion as well as decreasing left ventricle 
afterload, promoting ejection

Sodium nitroprusside
Milrinone

0.5–3 µg/kg/min
0.25–1.0 µg/kg/min

VA ECMO, veno-arterial extracorporeal membrane oxygenation.
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Neurology and Sedation (Also See Extracorporeal 
Life Support Sedation Guideline)

Neurologic complications (hemorrhage, thrombosis, and 
seizures) are relatively common and adversely affect morbidity 
and survival outcomes of children on ECMO for cardiac indi-
cations.21,65–67 Risk factors include weight <3 kg, gestational age 
less than 34 weeks, CPR, degree of precannulation vasoactive 
support, and acidosis.21,68 Surveillance for neurologic events 
includes daily clinical examination if feasible, screening cra-
nial ultrasounds, and EEG with more definitive neuroimaging 
(CT brain) recommended to detect intracranial hemorrhage or 
embolic events if heightened concern. Intermittent or continu-
ous EEG monitoring is recommended as seizures may only be 
detected electrographically, but this is not universally available.67

Analgesia and sedation strategies for patients supported on 
ECMO reflect strategies for critically ill children, trending towards 
minimizing sedation, permitting spontaneous movement, and 
facilitating neurologic assessment. While permitting awake 
ECMO is not practically possible in neonates on VA ECMO, it 
may be carefully considered in a select group of older children 
who have secure peripherally placed ECMO cannulae, good 
circuit function, closed-chest, and a level of understanding that 
will permit wakefulness without discomfort and anxiety, along 
with full engagement of wider multidisciplinary team and care-
givers including parents/guardians. A multidisciplinary approach 
with protocolized management of sedation as per institutional 
preferences is recommended. Opioids have been the mainstay 
of sedation management, but increasingly dexmedetomidine is 
being used over benzodiazepines. Dosing requirements may be 
elevated, as drugs are adsorbed into the circuit, tolerance can 
develop, and hemofiltration may remove administered drugs.69,70 
For example, midazolam, lorazepam, and fentanyl can show 
reductions greater than 50% in levels due to adsorption to the 
ECMO circuit.71 A practice of daily interruption of sedation 
medications on ECMO in neonates and infants, particularly if 
impaired renal and liver function, may be considered to prevent 
the accumulation of sedative agents and reduce tolerance and 

later effects of sedation withdrawal. Assessment and manage-
ment of delirium and overlap with signs of sedation withdrawal is 
an important consideration and should not be missed in children 
supported on ECMO.

Nutrition

Enteral nutrition in patients receiving VA ECMO is well tol-
erated, provides adequate nutrition, is cost-effective, and has 
minimal risk.72,73

Infection

Infectious complications are frequent and are associated 
with mortality.3,19,24 The most important risk factor is support 
duration.74 Vigilance is essential, as standard markers (tem-
perature, white cell count, inflammatory markers) may not 
adequately reflect the presence (or absence) of infection. There 
is little evidence to support routine surveillance cultures or the 
use of prophylactic antibiotics outside of that for administra-
tion within 30 minutes of emergent surgical procedures.75

Endocrine

Normoglycemic targets are effective for pediatric cardiac 
patients on ECMO.76,77

Patient Management Practice Points

 1. Arrhythmias should be addressed to promote myocar-
dial recovery and cardiac ejection.

 2. Vasoactive medications can be useful to manipulate 
SVR, complement VA ECMO flow and optimize tissue 
oxygen delivery (Table 3).

 3. Inotropes may promote cardiac ejection and decom-
pression but do not facilitate myocardial rest.

 4. Attention should be given to oxygenating blood travers-
ing the pulmonary vasculature in the setting of femoral 
VA ECMO to avoid differential oxygenation.

Figure 4. ECMO weaning flowsheet. ECMO, extracorporeal membrane oxygenation. 
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Weaning Off Extracorporeal Life Support and Decannulation

Successful VA ECMO wean is defined as discontinuation of 
mechanical circulatory support because the patient improved 
and is expected to recover.78 Assessment of readiness to wean 
should occur at regular intervals of 24–48 hours from the time 
of ECMO cannulation (Figure  1). Factors for consideration 
before weaning VA ECMO (shown in Figure  4) include the 
patient phenotype being compatible with recovery, preserved 
lung function, end-organ function recovering, and improved 
myocardial function with vasopressors and inotropes at low 
levels (e.g. epinephrine/norepinephrine ≤0.02–0.05 μg/kg/min 
or dopamine/dobutamine <5 μg/kg/min).79,80

Timing of Myocardial Recovery

The clinical course of myocardial improvement may be rapid, 
for example, 24 hours to 5 days, postcardiotomy or cardiopul-
monary bypass, or more prolonged in the case of primary myo-
cardial dysfunction or prolonged ischemia before correction of 
the cardiac lesion.81–85 While the former may be well supported 
with ECMO, those with prolonged myocardial dysfunction (>7–
10 days) should be considered for other forms of mechanical 
circulatory support as end-organs recover (Figure 4).81,86

Signs of Myocardial Recovery

While supported on VA ECMO, evidence of myocardial 
recovery includes increasing pulse pressure, increasing systolic 
pressure, rising end-tidal CO2, and improving ventricular sys-
tolic function on echocardiography.80,87–89 Loading conditions 
impact assessment of ventricular systolic function on ECMO, 
but other parameters (aortic velocity time integral ≥10 cm, left 
ventricular ejection fraction >20–25%, and lateral mitral annu-
lus peak systolic velocity ≥6 cm/s) under low flow conditions 
have been predictive of successful ECMO decannulation in 
adult patients with cardiogenic shock.80,89

Special Considerations

Left atrial decompression. In patients whose support 
includes a left atrial vent or atrial septostomy, lower vent flows, 
and a drop in circuit, mixed venous oxygenation coincide 
with left ventricular recovery. Tolerating left atrial or left ven-
tricular vent clamping and subsequent removal are initial steps 
towards weaning.

Systemic to pulmonary artery shunts. Some patients require 
partial occlusion of their systemic to pulmonary artery shunt or 
right ventricle to pulmonary artery (RV-PA) conduit to achieve 
sufficient systemic perfusion on ECMO. In these patients, the 
surgeon may need to adjust or remove the partial occlusion to 
balance pulmonary and systemic blood flow during weaning 
and trialing off ECMO. RV-PA conduits, valved or otherwise, 
usually do not require any restriction to balance systemic and 
pulmonary blood flows on ECMO.

Weaning With LA Decompression Practice Points

 1. If myocardial recovery has occurred, clamping of 
the LA/LV line should improve native cardiac output 
(increase pulse pressure).

 2. Clamping and removal of the LA/LV line and confir-
mation of sustained LV decompression can be the first 
component of a staged ECMO wean.

Weaning and Trailing Off Extracorporeal 
Membrane Oxygenation

Weaning is the term applied to the reduction of ECMO flow, 
which accompanies myocardial recovery. It may be conducted 
over several days. The purpose of weaning ECMO is to deter-
mine if the patient is ready to trial-off ECMO. The weaning 
process varies according to institutional and patient factors 
but would commonly occur over 4–8 hours with a gradual 
decrease in ECMO flows while optimizing lung ventilation 
strategy, intravascular volume status, and vasoactive medica-
tions. The purpose of the trial-off (15 minutes to 2 hours) is to 
determine if the patient is ready for decannulation. Clinical 
examination, targeted echocardiography, and serial laboratory 
parameters should be used to assess the adequacy of cardiac 
output and ventricular function during ECMO weaning. Once 
the patient has demonstrated satisfactory hemodynamics on 
minimum ECMO support, typically around 50 ml/kg/min, it is 
reasonable to trial the patient off ECMO. The main risk dur-
ing ECMO Trial-Off is circuit thrombus. Extracorporeal mem-
brane oxygenation should not be reduced below the lowest 
compatible with the oxygenator in the circuit. The risk of clot 
formation depends on anticoagulation, circuit size, existing 
clot burden, and circuit complexity. Adequate anticoagulation 
during ECMO trial-off must be maintained (using either infu-
sions or intermittent boluses). It is usual to carry out a trial-off 
ECMO for 1–2 hours before decannulation.

There are two broad trial-off strategies:

 1. Clamp trial. This is the classic approach. Clamping the 
cannula proximal to the patient (clamp trial) allows com-
plete separation of the patient from the circuit; circuit 
flow is maintained around the bridge. Adequate antico-
agulation should be established in the ECMO circuit to 
slow thrombosis of the cannulae and lines during the no-
flow state. Every 10–15 minutes, the cannulae are inter-
mittently flushed by releasing the clamps and clamping 
the bridge for 15–30 seconds.

 2. Pump-controlled retrograde trial-off is a more recently 
described technique that has been shown to be a safe, 
simple, and reproducible approach. This relies on the ret-
rograde flow generated by the patient’s native cardiac out-
put to maintain circuit integrity, provides a ‘stress test’ to 
evaluate cardiorespiratory reserve during the trial period off 
ECMO by creating an obligatory left to right shunt.90,91 This 
method avoids manipulation of the ECMO circuit without 
insertion of an arteriovenous bridge and circuit clamping.

 3. Some centers omit the trial-off completely and just dis-
continue ECMO after weaning but leave the cannula 
in place, fill them with heparinized saline and run a 
heparin flush through the cannula to maintain patency. 
Decannulation is then carried out after several hours if 
the patient remains stable.

Preparation for Extracorporeal Membrane 
Oxygenation Wean, Trial-Off, and Decannulation

Physiologic conditions during the wean should closely 
approximate those after decannulation, including optimized 
volume status and consideration of inotropy commencing sev-
eral hours before weaning. Preparing for ECMO trial-off and 
decannulation should include:
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 1. Confirm endotracheal tube position. Optimize ventila-
tion and lung recruitment for adequate oxygenation and 
ventilation. Consider transition to VV-ECMO if ventilation 
is contributing to the failure to wean (Figure 4);

 2. Correct hematological and metabolic abnormalities;
 3. If temporary pacing wires are available, connect and test 

pacemaker;
 4. Consider the use of inhaled nitric oxide or pulmonary 

vasodilator therapy in lesions that may predispose to pul-
monary hypertension;

 5. Optimize preload (central venous pressure [CVP] > 5mm 
Hg) and determine inotropic medication plan (often epi-
nephrine 0.02–0.05 µg/kg/min or dopamine/dobutamine 
3–5 µg/kg/min);

 6. ECMO flows are reduced (by 20 ml/kg/min increments). 
Clinical hemodynamic assessment of HR, BP, and CVP 
should determine the timing of further decrements inflow. 
If hemodynamic parameters remain within acceptable 
limits with minimal change post wean, flows can con-
tinue to be further reduced;

 7. Assessment of clinical status, lactate, AVO2 difference, 
and respiratory gas exchange (arterial blood gas) should 
be made at low ECMO flow (50 ml/kg/min);

 8. Echocardiography may be used for assessment of sys-
tolic ventricular function, estimation of RV pressures, 
adequacy of volume status, and additional evaluation for 
valvular regurgitation/stenosis;

 9. During weaning, the adequacy of cardiac output and 
respiratory gas exchange should be assessed, and ongoing 
requirement for support should be determined (Figure 4).

VA ECMO decannulation can be performed in the operating 
room or the intensive care unit according to local protocols. 
Potential complications should be considered, including low 
cardiac output, pulmonary hypertension, bleeding, arrhyth-
mias, and the need to rapidly reinitiate VA ECMO support. 
Candidacy for recannulation should be discussed before 
attempting weaning and decannulation since survival declines 
with subsequent ECMO runs.82,92,93

Decannulation is a surgical operation that should be super-
vised by a suitably qualified surgeon and undertaken with for-
mal general anesthesia and aseptic technique. The circuit tubing 
proximal to the cannula should be prepared and placed in the 
operative field. When removing a venous cannula, venous air 
embolism may occur through the cannula side holes if the 
patient is breathing spontaneously. This is prevented by either a 
Valsalva maneuver on the ventilator or by the use of short-term 
pharmacological paralysis. For peripheral cannulation, vascular 
reconstruction may be required depending on the cannulation 
technique. For central cannulation, chest closure can be consid-
ered if the ventricular function has improved significantly and 
indices of end-organ oxygen delivery are reassuring.

Failure to Wean

Failure to progress according to expected timing for etiology 
of cardiovascular failure should be investigated early to assess 
for residual lesions, inadequacy of hemodynamic or pulmonary 
support, or alternate diagnoses.20,31 Cardiac catheterization may 
reveal residual lesions amenable to surgical or interventional cor-
rection not apparent on echocardiography.94,95 With each attempt 
at weaning, the underlying cause of failure to wean (pulmonary, 

cardiovascular, or cardiopulmonary) should be determined to 
target optimal mechanical support strategies (Figure 4).

Risk Factors for Death

The mortality associated with pediatric cardiac ECMO is 
between 45% and 50% depending on the indication.1,19,20 Risk 
factors for mortality in children on ECMO for cardiac indica-
tions include acute renal failure, bleeding, and pre-ECMO 
lactatemia and acidosis with delayed resolution post-ECMO 
initiation and ECMO duration.19,96–101 Primary cardiac diagno-
sis has a significant bearing on mortality, in particular patients 
with single-ventricle physiology.6 If myocardial function remains 
poor despite optimization of ECMO support and identification 
and management of residual lesions, consideration may be 
given to transition to longer-term device support (Figure 4). Such 
transition to longer-term VAD should occur along with assess-
ment for cardiac transplantation. Transparent discussions with 
patient families and decision-makers must occur regarding the 
risk of mortality increasing over the course of longer duration 
VA ECMO. Setting expectations and goals of care in the event of 
failure of organ recovery should be built over the ECMO course, 
with shared values informing end-of-life care.
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